首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2876篇
  免费   324篇
  国内免费   21篇
  2023年   13篇
  2021年   32篇
  2020年   32篇
  2019年   52篇
  2018年   68篇
  2017年   47篇
  2016年   73篇
  2015年   152篇
  2014年   146篇
  2013年   181篇
  2012年   220篇
  2011年   202篇
  2010年   121篇
  2009年   112篇
  2008年   122篇
  2007年   116篇
  2006年   134篇
  2005年   135篇
  2004年   124篇
  2003年   111篇
  2002年   88篇
  2001年   91篇
  2000年   93篇
  1999年   59篇
  1998年   31篇
  1997年   27篇
  1996年   29篇
  1994年   22篇
  1993年   11篇
  1992年   43篇
  1991年   46篇
  1990年   36篇
  1989年   36篇
  1988年   31篇
  1987年   36篇
  1986年   28篇
  1985年   18篇
  1984年   30篇
  1983年   31篇
  1982年   25篇
  1981年   17篇
  1980年   14篇
  1979年   18篇
  1978年   23篇
  1977年   16篇
  1976年   19篇
  1975年   13篇
  1974年   12篇
  1973年   15篇
  1972年   11篇
排序方式: 共有3221条查询结果,搜索用时 15 毫秒
31.
32.
Possible involvement of cyclic GMP-dependent and cyclic AMP-dependent protein kinases, protein kinase modulators and cyclic nucleotide phosphodiesterases in functions of vascular tissues were investigated in the dog. All of the above activities, localized in the smooth muscle-rich inner layer of the blood vessels, were found to be higher in the arteries than in the veins. The peripheral arteries were disproportionately richer in cyclic GMP-dependent protein kinase (as indicated by high ratios of cyclic GMP-dependent to cyclic AMP-dependent protein kinase) than were the veins, with the exception of the pulmonary artery, an atypical arterial tissue exposed to low blood pressure. Interestingly, the protein kinase ratio for the aorta, an artery with no significant role in blood pressure regulation, was not higher than that for the vena cava. Creation of femoral arteriovenous fistulae in the dogs led to preferential reductions in the cyclic GMP-dependent enzyme activity both in the proximal and distal arteries, whereas it was elevated in the stressed vein distal to the anastomotic site. The cyclic GMP-dependent enzyme was preferentially reduced in the saphenous artery distal to occlusion. Changes in the cyclic GMP-dependent enzyme activity appeared to precede gross atrophy or hypertrophy of the vessels. It is suggested that the vascular cyclic GMP-dependent protein kinase may be closely related to peripheral resistance and its regulation.  相似文献   
33.
34.
The pattern of colonization by microorganisms on root surfaces from three species of seagrass belonging to the genus Posidonia was assessed. Microbial abundance on roots was measured by two electronic microscope techniques. Trends in microbial colonization between species and root order were defined. In addition, eutrophication status of the sampling sites and physiological status of Posidonia oceanica (L.) Delile roots have been taken into account. Our results show high microbial abundance in the Mediterranean species P. oceanica, in comparison with the low rates of colonization found in the Australian species P. australis Hook f. and P. sinuosa Cambridge et Kuo. Microbial density tended to decrease as root order increased, and living roots always showed higher microbial abundance than dead ones. Colonization of P. oceanica roots at the three sites with different environmental status follows different trends according to root order. It is suggested that root age influences the rate of microbial colonization of seagrass roots and that colonization of root surface by microorganisms is associated with organic exudates from the roots rather than with decaying root tissues.  相似文献   
35.
Dimethylformaide (DMF) is a major solvent predominately used in synthetic leather and resin production. Many human and animal studies have linked the cause of hepatoxicity to DMF. Previously, the authors demonstrated the significant dose-response relationship between abnormal liver function tests and DMF exposure and the interaction with hepatitis B virus (HBV) infection in Taiwanese workers. Because the toxic effect of various chemicals can be modified by metabolic traits, the study also investigated the influence of the glutathione S-transferases (GSTM1 and GSTT1) on the toxic effect of DMF. The average DMF exposure concentration was 23.87 ppm (range 5.2-86.6 ppm) in the high-exposure (>/=5 ppm) group and 2.41 ppm (range 0.9-4.3 ppm) in the low-exposure (<5 ppm) group. There were 13 of 44 (29.6%) abnormal liver function tests (elevations of either glutamate oxaloacetate transaminase (GOT) or glutamate pyruvate transaminase (GPT)) among the high DMF exposure workers, two of 22 (9.1%) abnormal liver function tests among the low DMF exposure workers. Chronic liver disease as determined by ultrasonography was present in seven of 44 (15.9%) high DMF exposure workers, and 0 of 22 (0%) low DMF exposure workers. There were 11 of 34 (32.4%) abnormal liver function tests among the GSTT1 null genotype workers, and four of 32 (12.5%) abnormal liver function tests among the GSTT1-positive genotype workers. Compared with the low DMF exposure workers, the adjusted odds ratio and 95% confidence intervals for abnormal liver function tests was 6.78 (0.94-48.7) for the high DMF exposure workers. Compared with the GSTT1-positive genotype workers, the adjusted odds ratio and 95% confidence intervals for abnormal liver function tests was 4.41 (1.15-16.9) for the GSTT1 null genotype workers. Compared with the low DMF group with GSTT1-positive genotype workers, the odds ratio (adjusted for HBV status) of abnormal liver function test was 12.38, 95% CI=(1.04-146.9) for the high DMF group with GSTT1 null genotype workers. This study indicates that abnormal liver function and chronic liver disease are associated with DMF exposure, and there are more than multiplicative interaction effects on abnormal liver function tests between the DMF exposure and the GSTT1 genotype.  相似文献   
36.
While numerous small ubiquitin‐like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid‐dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ‐K‐X‐E/D consensus motif, such as CBP and Elk‐1, but not substrates with core ψ‐K‐X‐E/D motif alone or SUMO‐interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia‐elicited modulation of sumoylation and target gene expression of CBP and Elk‐1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response.  相似文献   
37.

Background

Organic bioelectronic devices consisting of alternating poly(3,4-ethylenedioxythiophene) (PEDOT) and reduced graphite oxide (rGO) striped microelectrode arrays were fabricated by lithography technology. It has been demonstrated that the organic bioelectronic devices can be used to spatially and temporally manipulate the location and proliferation of the neuron-like pheochromocytoma cells (PC-12 cells).

Methods

By coating an electrically labile contact repulsion layer of poly(l-lysine-graft-ethylene glycol) (PLL-g-PEG) on the PEDOT electrode, the location and polarity of the PC-12 cells were confined to the rGO electrodes.

Results

The outgrowth of spatially confined bipolar neurites was found to align along the direction of the 20 μm wide electrode. The location of the PC-12 cells can also be manipulated temporally by applying electrical stimulation during the neurite differentiation of PC-12 cells, allowing the PC-12 cells to cross over the boundary between the PEDOT and the rGO regions and construct neurite networks in an unconfined manner where the contact repulsive coating of PLL-g-PEG was removed.

Conclusions

This adsorption and desorption of the PLL-g-PEG without and with electrical stimulation can be attributed to the tunable surface properties of the PEDOT microelectrodes, whose surface charge can switch from being negative to positive under electrical stimulation.

General significance

The electrically tunable organic bioelectronics reported here could potentially be applied to tissue engineering related to the development and regeneration of mammalian nervous systems. The spatial and temporal control in this device would also be used to study the synapse junctions of neuron–neuron contacts in both time and space domains. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   
38.
It is generally accepted that most gastrointestinal diseases are probably caused by the bacterial pathogen Helicobacter pylori (H. pylori). In this study we have focused on the comparison of protein expression profiles of H. pylori grown under normal and high-salt conditions by a proteomics approach. We have identified about 190 proteins whose expression levels changed after growth at high salt concentration. Among these proteins, neutrophil-activating protein (NapA) was found to be consistently up-regulated under osmotic stress brought by high salts. We have investigated the effect of high salt on secondary and tertiary structures of NapA by circular dichroism spectroscopy followed by analytical ultracentrifugation to monitor the change of quaternary structure of recombinant NapA with increasing salt concentration. The loss of iron-binding activity of NapA coupled with noticeable energetic variation in protein association of NapA as revealed by isothermal titration calorimetry was found under high salt condition. The phylogenetic tree analysis based on sequence comparison of 16 protein sequences encompassing NapA proteins and ferritin of H. pylori and other prokaryotic organisms pointed to the fact that all H. pylori NapA proteins of human origin are more homologous to NapA of Helicobacter genus than to other bacterial NapA. Based on computer modeling, NapA proteins from H. pylori of human isolates are found more similar to ferritin from H. pylori than to NapA from other species of bacteria. Taken together, these results suggested that divergent evolution of NapA and ferritin possessing dissimilar and diverse sequences follows a path distinct from that of convergent evolution of NapA and ferritin with similar dual functionality of iron-binding and ferroxidase activities.  相似文献   
39.
Prolactin-stimulated adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) mediates several reproductive behaviors including mating/pregnancy, dominant male pheromone preference in females, and paternal recognition of offspring. However, downstream signaling mechanisms underlying prolactin-induced adult neurogenesis are completely unknown. We report here for the first time that prolactin activates extracellular signal-regulated kinase 5 (ERK5), a MAP kinase that is specifically expressed in the neurogenic regions of the adult mouse brain. Knockdown of ERK5 by retroviral infection of shRNA attenuates prolactin-stimulated neurogenesis in SVZ-derived adult neural stem/progenitor cells (aNPCs). Inducible erk5 deletion in adult neural stem cells of transgenic mice inhibits neurogenesis in the SVZ and OB following prolactin infusion or mating/pregnancy. These results identify ERK5 as a novel and critical signaling mechanism underlying prolactin-induced adult neurogenesis.  相似文献   
40.
Besides the liver, it has been difficult to identify which organ(s) and/or cellular component(s) contribute significantly to the production of human FVIII:c (FVIII). Thus far, only endothelial cells have been shown to constitute a robust extrahepatic source of FVIII, possibly explaining both the diverse presence of FVIII mRNA in the body, and the observed increase in FVIII levels during liver failure. Here, we investigate whether human mesenchymal stem cells (MSC), ubiquitously present in different organs, could also contribute to FVIII production. MSC isolated from human lung, liver, brain, and bone marrow expressed FVIII message as determined by quantitative‐RT‐PCR. Using an antibody specific for FVIII, confocal microscopy, and umbilical cord‐derived endothelial cells (HUVEC) as a negative control, we demonstrated that, in MSC, FVIII protein was not stored in granules; rather, it localized to the perinuclear region. Furthermore, functional FVIII was detected in MSC supernatants and cell lysates by aPTT and chromogenic assays. These results demonstrate that MSC can contribute at low levels to the functional FVIII pool, and advance the understanding of the physiology of FVIII production and secretion. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号